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ABSTRACT

The waveguide mode tropospheric propagation effect prediction program, M-

Layer, originally written by Naval Command Control and Ocean Surveillance Center,

Research, Development, Test and Engineering Division (NRaD), is revised for

greater accuracy, speed and stability. The accuracy improvement is achieved first by

converting the extended complex number representation into the representation by

the complex exponent then by re-writing the group of Airy function computation

subroutines. This accuracy improvement makes it possible to implement a self-

checking procedure for determining the proper method to evaluate the height gain

function. Finally, a new mode locating algorithm is introduced which improves the

efficiency of mode search and eliminates the looping problem observed. The revision

has been documented and the new program source code has been delivered to

NRaD. It is also recommended that the mode search protocol, not just the mode

locating algorithm introduced in this revision, be completely revised for better

performance.
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I. INTRODUCTION

M-Layer is a FORTRAN program for computing the propagation factor of an

electromagnetic (EM) wave in a stratified atmosphere. It is desirable to extend the

capability of this program to include a layer of random medium representing the air-

ocean interface. To achieve this goal, there are many basic theoretical problems

which have to be answered. First of all, the effect of the earth curvature in this

program is taken care of through the classical earth-flattening approximation [Ref. 1],

but the result [Ref. 2] does not agree with the more recent diffraction theory of Fock

[Ref. 3] near the surface of the earth. Then there is the question about the better

method to model the atmospheric refractive index profile, either piecewise linear or

quadratic, to be resolved by a new earth-flattening approximation under development

at NPS. The new approximation will also determine the functions to be used for the

representation of the EM fields in each layer through uniform asymptotic theories.

Within some proper region, these new functions are expected to reduce to the Airy

functions utilized by M-Layer. The evolutionary nature of this effort prompted this

review to improve the inner workings of the M-Layer program. In particular, the

subroutines to search for the modes and those for evaluating the Airy functions will

remain as an important part of a program investigating questions about EM wave

propagation by solving the related boundary value problem.
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It can never be overemphasized that a boundary value problem which includes

a layer of random medium or some range dependent inhomogeneity, set up according

to the Maxwell equations, will include backscattering in its solution. This is in sharp

contrast to those numerical procedures based on the parabolic approximation to the

wave equation for which the backscattering is completely ignored.

In what follows, the M-Layer program and the reasons for replacing the

extended complex numbers with their complex exponent representations are

discussed, together with some other problems encountered and resolved during this

investigation.

A. M-LAYER

In M-Layer, the index of refraction of the atmosphere is assumed to be height

dependent and is approximated with a continuous piecewise linear profile. The

classical earth-flattening approximation is utilized to allow the use of the cylindrical

coordinate system while retaining the effect of the curvature of the earth. This is

done simply by substituting the index of refraction with the modified index of

refraction, which also has a piecewise linear profile [Ref. 1].

The source of the EM radiation is assumed to be either a vertical electric

dipole or a vertical "magnetic dipole", with the latter providing an approximation to

the radiation of a horizontal electric dipole. The dipole is located along the positive

z-axis of the cylindrical coordinate system while the origin is sitting on the ground.

The x-y plane is the 'flattened' earth surface. After carrying out the Hankel
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transform along the radial direction, the resulting spectrum of the Hertzian dipole

field within each layer of a linear segment of the modified refractive index profile is

reduced to a linear combination of the Airy functions. Specifically, the layers are

numbered to increase with height, with the first layer being the one above the

ground. The spectrum of the Hertzian dipole field is proportional to the product of

the values, at the transmitter height and at the receiver height respectively, of the

height-gain function. At a height within the i-th layer, the height-gain function is

given by [Ref. 4]:

f/p,z)--/p )[A,(p k(])+2()

where p is the radial component of the propagation vector and is also the spectral

variable of the Hankel transform; hence it is the same throughout all layers. It is a

complex variable whose imaginary part represents the radial attenuation rate of the

spectral component of the Hertzian dipole field. Under the classical earth-flattening

approximation, the spectrum of the Hertzian dipole field contains a discrete portion

and a branch cut. The discrete spectrum gives rise to the creeping wave modes

diffracted by the earth surface and the dielectric waveguide modes supported by the

layered atmosphere. The contribution from the branch cut is usually negligible,

especially for the fit 'd in the shadow of the earth. The M-Layer program locates the

discrete spectrum for modes having a radial attenuation rate below a predetermined

value. Contributions from these modes determine the propagation factor of the

wave.

3



The variable q, in the i-th layer is a dimensionless linear function of height z

with the free space wavenumber k, the modified index of refraction mi at the lower

boundary z = zi, the slope of the modified index of refraction ai/2 and p as

parameters:

q,=' (k 2 m+izi)2 (2)

The height dependence of the field is given in terms of the functions k1(qi) and

k2(qi), which are proportional to the Airy functions Ai(-qFP2 '/ 3 ) and Ai(-qi)

respectively. Of these two functions, at a height so large thatq, is large and positive,

kl(qi) represents a downward going wave and ej'/ 3kl(qi)+k2(qi) represents an

upward going wave. The coefficientsAi and Bi are determined by the conditions on

the continuity of the Hertzian dipole field and its derivative across layer boundaries

and by the normalization condition that the integral of the square of the height-gain

function over all height equals unity.

To fulfill the radiation condition, the highest layer is given the same refractive

index as the free space above it and only the outgoing wave is allowed within this

layer. Below the 'flattened' earth surface, the field is assumed to be a plane wave

propagating downward. Hence, only the normalization factors are required in the

highest layer and in the ground. By assigningBi to unity in the highest layer, all the

coefficients A i and Bi can be determined, according to the boundary conditions, to

within a multiplicative factor for Bi. This multiplicative factor is then deduced from

4



the normalization condition. This procedure can also be carried out from the ground

level up. That these coefficients can be computed either from the highest level down

or from the lowest level up is a result of the fact that p belongs to the discrete

spectrum of the Hertzian dipole field. Consequently, agreement between these two

ways of evaluating theA i and Bi coefficients confirms that a mode has been located

accurately.

B. EXTENDED COMPLEX NUMBER REPRESENTATION

The discrete spectrum of the Hertzian dipole field corresponds to the zeroes

of the modal function which is a determinant whose elements consist of kl(qi) and

k2(qi) at the layer boundaries. Numerically, the magnitude of this modal function

causes overflow and underflow problems as kl(qi) or k 2(qi) becomes exponentially

large or small for complex qi values. In the M-Layer program, to overcome this

problem, a complex number is written as a scaled number, which is complex,

multiplied by a scaling factor which is an integer power of e, the base of natural

logarithm. This integer is chosen so that the greater of the absolute values of the

real part and the imaginary part of the scaled number lies within e +1. A complex

number written in this form is called an extended complex number. Multiplication

of two extended complex numbers requires summing the two integer exponents in

addition to carrying out the regular complex multiplication of the scaled numbers.

Addition of two such numbers is achieved through the use of an addition subroutine:

the larger scaling factor is fkctored out of both addends before they are combined.
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The scaling factor is adjusted after each addition and after a sequence of

multiplications to make sure that the resulting scaled number is still within the

desired range. Addition is troublesome when the two numbers to be added nearly

cancel each other. Under this circumstance, the scaling factors of the two numbers

are identical and both the real parts and the imaginary parts of the scaled numbers

are almost equal with opposite signs. It is clear that the real part and the imaginary

part of the sum lose their accuracies to different degrees; hence the phase angle may

incur substantial error. To remedy this situation, interpolation procedures have to

be devised.

As two complex numbers come close to cancel each other, they must be out of

phase by almost 180 degrees. By factoring out the square root of their product

instead of the scale factor, the resulting addends become reciprocal to each other,

both lying within an identical small angle to, and on the same side of, the imaginary

axis. They are close to the unit circle, but one is on the inside and the other is on

the outside. Taking out further a phase factor of r/2 after writing the addends in

their exponential forms, the exponents become small numbers for which a Taylor

series expansion of the exponential function converges rapidly and can be used for

interpolating the sum to achieve higher accuracy. Note that after the extra phase

factor of 7r/2 is removed from the addends, it is actually the difference of the

resulting two reciprocals which is computed. This procedure effectively picks the

direction on the complex plane along which the addends are almost opposing each
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other to carry out their cancellation. The resulting sum has a phase angle nearly

perpendicular to this chosen direction.

It is evident that the representation of a complex number by its complex

exponent of base e provides better phase accuracy for addition. A one-to-one

correspondence can be achieved by restricting the imaginary part of this exponent to

within -v and r. This will be called the exponential representation or the complex

exponent representation henceforth. It is convenient for multiplication: adding the

complex exponents of the two factors will suffice. Conversion of the M-Layer

program from the extended complex number to the complex exponent representation

has been carried out.

C. OTHER REVISIONS

As better precision is achieved, problems with the mode search procedure and

the evaluation of the Ai and Bi coefficients become severe. They are thoroughly

investigated and resolved. For mode search, although the division of the region of

interest into "contour rectangles" and further into square "meshes", and the search

pattern to move around the sides of a "contour rectangle" to find and follow "phase

lines" into it are kept, the basic assumption of Sheliman and Morfitt [Ref. 51 that

both the real and the imaginary parts of the modal function are linear along every

edge of a mesh square is completely abandoned. For the evaluation of the Ai and

B i coefficients, the "test for evanescence" conditions have been removed. A condition

to determine whether to evaluate the coefficients from the ground level up or from
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the top level down has been fomulated and incorporated into the program. This

accomplishment leads to the relaxation of mode locating accuracy requirements

which, combined with the improved precision of the revised program, makes the first

order Newton-Raphson iteration unnecessary. The specific changes in the program

and the resulting gains in speed, accuracy and execution stability are discussed in the

following chapters. Suggestions to completely revise the mode search protocol to do

without the "contour rectangles" and to look for the modes according to their range

attenuation rates are also provided.
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II. PROGRAM REVISIONS

M-Layer is structured into three parts: setup, mode search and propagation

factor evaluation. The main input is the modified refractive index values at specified

heights so that a piecewise linear profile can be constructed. If the mode locations

for the particular profile are available from a previous run of the program, they can

also be included in the input and the mode search procedures will be bypassed. The

various ranges and transmitter and receiver heights for which propagation factors are

desired are also specified. The subroutine WVGSTDIN is called to input the

information from an ASCII data file. The program then computes the constants to

be used for mode search and propagation factor evaluation. The mode search is

performed with the subroutine FNDMOD. The MODSUM subroutine is then

invoked to first compute the Ai and Bi coefficients as explained in the Introduction,

then compute the propagation factor and the propagation loss. The complete

program structure is given in Figures 1 and 2. There are several other subroutines

which are not included in these and other figures, such as DHORIZ for computing

the horizon distance between a transmitter and a receiver for reference purpose;

CHKMOD, a maintenance routine for removing zeroes from reported mode

locations by older versions of the program; or A02H20, a routine to compute the

atmospheric absorption coefficient due to oxygen and water vapor. They will not be

9
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discussed as they do not contribute directly to the main purpose of this program of

locating the modes and computing the propagation factor.

The program structure has been altered as shown in Figures 3 and 4. Since the

Ai and Bi coefficients have to be evaluated only once, they are now obtained through

a call to the subroutine ABCOEF directly from the main program right after the

modes are located. Several subroutines are dropped in this revision for various

reasons: The subroutines NORME and NORMRE are eliminated because they are

no longer needed due to the change in complex number representation; the

subroutines NOMSHX, FDFDTX and DXDETR are not used because the modes

are now located with adequate precision without further iteration; the subroutine

ADDX is not listed separately because it is called only once and has been reduced

to only a few lines which are placed where the subroutine is called in the original

program. On the other hand, changes in the mode search algorithm require the

addition of two new subroutines: SURFO is a modified and simpler version of SURF;

ROOTS replaces QUAD. Due to the change in complex number representation, all

subroutines listed below FNDMOD and MODSUM have been revised, including

their input/output lists. But except for SURFO and ROOTS, the utilities of these

subroutines are the same as those of the original ones. Descriptions of these

subroutines can be found in the report by Yeoh [Ref. 4].

The most significant changes have been made in XCADD, XCDAIT and

XCDAIG for adopting the complex exponent representation and improving

11
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computation speed and accuracy; in FZEROX, FINDFX, ROOTS and SURFO for

stabilizing and simplifying the mode search algorithm; and in ABCOEF for

implementing the criteria to determine the reliable manner for evaluating the A i and

Bi coefficients. These changes are discussed in the sections below. The source code

listings of the completely new subroutines XCADD and ROOTS and the significantly

revised subroutines FZEROX and ABCOEF, which are compiled with Microsoft

FORTRAN version 5.00, are attached as Appendices A through D. Validation of

the revised program has been carried out at 9.6 GHz for all the 21 profiles listed in

Yeoh [Ref. 4].

A. ADDITION SUBROUTINE

XCADD is the subroutine implementing the addition of complex numbers

under the representation by their exponents. Given the double precision complex

numbers z1 and z2 as the exponents of the addends, this subroutine returns the

exponent of the sum. Since a double precision number has an accuracy of 53 bits,

if the real parts of z1 and z2 differ by more than 53 bits, the exponent of their sum

will simply be the one of the greater real part. When cancellation becomes serious,

the square root of the addends is factored out first. Then the four-term Taylor series

expansions of the resulting reciprocals are summed. Since the leading term of the

sum of the Taylor series is a good estimate of the sum of the reciprocals and the

relative error of the four-term Taylor series sum is proportional to the fourth order
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of this leading term, the threshold for invoking this interpolation procedure is set at

the highest possible value of 2-14 allowed under double precision. Experimenting

with this procedure shows that this interpolation improves accuracy as long as the

threshold is set at a number between 2 - 24 and 2-14.

B. AIRY FUNCTION EVALUATION

Similar to the original program, the evaluation of the Airy function adopted the

algorithm prescribed by Schulten, et. al. [Ref. 6]. In the new program, changes are

made to follow the advice of Schulten, et. al. concerning the region within which a

Taylor series expansion, instead of the faster Gaussian quadrature, has to be used to

achieve double precision accuracy. Other changes in implementing the algorithm are

described below.

1. XCDAIT

Due to the similarity in their Taylor series coefficients, the Airy function

and its derivative are evaluated within a single loop. The relative accuracy of the

derivative of the Airy function is set at the double precision limit of 2 - 54.

2. XCDAIG

Six term Gaussian quadrature is used for evaluating the Airy function and

its derivative outside the circle of radius 4.97 centered at (0.90, 2.80) on the complex

plane. The use of four-term quadrature outside a radius of 15 from the origin

suggested by Schulten, et. al. is not adopted. The six-term quadrature in this range

14



retains a higher accuracy while overall speed improvement by using both the four-

term and the six-term quadrature appears to be minimal.

C. MODE LOCATING

As explained in the Introduction, the modes are located at the zeroes of the

modal function. These zeroes are located on the upper complex q11 plane. Here q11

is the value of q, on the earth's surface, which, according to Eq.(2) of Chapter I, is

a linear function of p2. For a horizontally propagating mode, p/k is close to unity.

The maximum range attenuation rate specified for the desired modes, which

corresponds to a limit on the imaginary part of p, determines approximately the

upper bound for the imaginary part of the q11 complex plane to be searched for

modes. The Shellman and Morffit mode search procedure first divides the search

region horizontally into "contour rectangles" each of which spans 160 meshes along

the real q11 direction. A mesh is a square whose size is an adjustable parameter of

the order 10-4 at 9.6 GHz for most of the cases considered herein. This parameter

is determined by the frequency and the slope of the modified index of reflection in

the lowest layer of the profile. The search commences at the top left corner of the

"contour rectangle" whose left edge has a real coordinate value close to the

difference of the real parts of the q11 values, with the minimum modified index of

refraction and the index near the surface substituted into Eq.(2) of Chapter I. After

the search over the initial rectangle is completed, the program moves to search the

15



next rectangle until a specified maximum number of modes are found or a specified

number of "contour rectangles" have been searched.

The search for zeroes makes use of the fact that a real function changes sign

when it crosses a simple zero. Since a zero of a complex valued function F(q) is

where both its real part and imaginary part vanish, a necessary condition for a point

q. to be a zero is that it is on the intersection of two curves defined by Im{F(q)} =

0 and Re{F(q)} = 0. The program searches around a "contour rectangle" for a sign

change in Im{F(q)} across an edge of a mesh bordering the side of the "contour

rectangle" to determine that a line of Im{F(q)} = 0 has been encountered. The

search then follows this line into the meshes within the "contour rectangle", checking

each mesh to see if a curve Re{F(q)} = 0 enters the mesh under investigation. All

these steps make use only of the assumption that the zeroes of the modal function

are simple. Once both the curve Im{F(q)} = 0 and the curve Re{F(q)} = 0 are

determined to be present within a mesh, the location of their possible interception

is estimated. An algorithm for this estimate is required.

Shellman and Morffit [Ref. 5] introduced a further assumption that the

functions Re{F(q)} and Im{F(q)} are both linear along the edges of a mesh. Based

on this assumption, they try to estimate the locations where the curve Im{F(q)} =

0 enters and leaves a mesh square, and the location of c6 if a curve Re{F(q)} = 0

also enters the same mesh. It is obvious that information about the locations where

the curves enter and leave the mesh square is not essential. Furthermore, in the 18
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m duct height case, the scheme causes the search path to loop around four

contiguous meshes until the search is broken up by the limit on the number of

meshes to be investigated. Replacing their technique requires major changes in the

subroutines involved. A new subroutine ROOTS is provided to estimate the location

of the intersection of the curves Im{F(q)} = 0 and Re{F(q)} = 0. These changes

eliminate the looping problem.

Another problem is encountered in the 40 m duct height case when a large

number of zeroes are found in the lower half complex q 1 plane. These zeroes

appear to belong to the reflection coefficient on the wrong sheet of the branch cut

and are not waveguide modes. This happens because the search region has been

extended below the real q 1 axis to avoid the singularity in SURF. The problem with

this singularity should have been solved within SURF, especially because it occurs

only when the derivative of the subroutine output variable gamma with respect to qn

is computed. Since this derivative is not needed during mode search, the extension

of the search region to the negative q11 plane is unnecessary. A simplified routine,

SURFO, is introduced which is exactly the same as SURF except that it does not

evaluate the derivative of gamma. By using this subroutine instead of SURF, the

search path in the revised program does not avoid the real and the imaginary axes.

1. FNDMOD

The search region is limited to the upper half q11 plane. All the modes

found are ordered according to their range attenuation rates before those numbered

beyond the maximum modes allowed are abandoned.

17



2. FZEROX

Since the curve Im{F(q)} = 0 enters into a mesh square through an edge,

the values of Im{F(q)) must change sign over the end points of either one or all

three other edges. When there is only one other edge across which Im{F(q)}

changes sign at its end points, it is the edge across which the curve Im{F(q)) = 0

exits the mesh square. Ambiguity arises when all edges indicate a change of sign at

their end points. When this occurs, a "right turn rule" is adopted which assumes that

the curve exits the edge to the right of the one along which it enters the mesh

square. Such a rule avoids the retracing of the search path when the mesh square

is revisited as entering this same mesh square from the left side of an edge after

exiting from its right side requires a crossing of the Im{F(q)} = 0 curve, which is

prohibited under the simple zero assumption. On the other hand, the actual curve

may have turned left and then returns to this mesh square, i.e., following a "left turn

rule." Under such a scenario, this wrong choice would have left a segment of the

curve not searched. This difficulty has not been observed during testing. In fact, the

ambiguous situation seldom occurs. Note also that, as remarked above, two lines of

Im{F(q)} = 0 do not cross each other unless a higher order zero is present. Hence,

only a "right turn rule" or a "left turn rule" for the curve to exit the mesh is allowed.

18



Exiting the opposite edge demands a pair of crossing Im{F(q)} = 0 curves within the

mesh square. This violates the assumption that all zeroes are simple. Also note that,

the possibility of vanishing Re{F(q)} or Im{F(q)} values at the corners of a mesh

square is eliminated through a small adjustment in FINDFX.

3. FINDFX

Both the vertical shift away from the real q11 axis and the horizontal

offset away from the imaginary axis are unnecessary and have been removed from

this routine. Furthermore, as a result of converting to the complex exponent

representation, the sine and cosine of the argument of the modal functions are

examined for sign changes in FZEROX. This is implemented in FINDFX by

including the 6osine and sine values of the argument of the modal function in the

output list. To avoid the indeterminate case when either the real or the imaginary

part of the modal function becomes zero at any corner of a mesh square, the

argument for computing the cosine and sine values is increased by 2- 53 when this

occurs. This is equivalent to a consistent small distortion of the particular corner of

the mesh square. This will not cause any error in locating the zero because FIN-DFX

still returns separately the unmodified exponent of the value of the modal function.

4. ROOTS

Assuming that the modal function is analytic within the mesh, this

subroutine utilizes the values of the modal function at the four corners of the mesh
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square to determine the Taylor series expansion coefficients of the modal function

to the third order. The roots of this cubic polynomial are then located using

Cardan's solution by radicals. If the higher order coefficients fall below machine

resolution for a root within the mesh square, these coefficients are regarded as zero

and the order of the polynomial is reduced and can be solved more expediently. If

the function is determined to be constant over the mesh square, the center of the

square is taken as the root location.

D. EVALUATING A i AND Bi

As discussed in the Introduction, the A i and B, coefficients can be evaluated

either from the top level down or from the lowest level up. These two procedures

are simply called "integration down" and "integration up", respectively, in the original

documentation [Ref. 4]. The location of a mode has been called an eigenvalue.

That the results of "integration down" and "integration up" agree is a manifestation

that the eigenvalue is located accurately.

The subroutine ABCOEF evaluates the coefficients Ai and Bi for each mode.

If the range attenuation rate for a mode is greater than 0.1 dB/km, the coefficients

are evaluated from the lowest layer up. Otherwise, it is evaluated from the top layer

down. It is obvious that such a rule must be implemented because the results of

"integration up" and "integration down" do not agree for many modes. Efforts are

made to determine the cause of this discrepancy and to devise a means to resolve it.
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Investigation reveals that inadequate precision in the location of the modes is

one source of the problem. Since the Bi coefficients depend on the A i coefficients,

while the A i coefficients are obtained directly, only the Ai coefficients need to be

examined. The Ai coefficients of the six modes of lowest range attenuation rates for

all 21 profiles except the one without evaporation duct are computed using

eigenvalues of different accuracy controlled by the first order Newton-Raphson

iteration method. Table 1 shows the Ai coefficient computed with the new program.

They are arranged from the top layer down. In the i-th layer, the A i coefficient

computed by "integration downward" depends only on Ai + 1 in the layer above while

that computed by "integration upward" depends only on Ai.. in the layer below.

Hence in each layer, the coefficient obtained by "integration downward" is listed

above that obtained by "integration upward". There are five sets of Ai values listed,

with the magnitudes given in powers of 10, and the phase given as a multiple of 7r.

They are obtained from eigenvalues of decreasing accuracy -the one used to compute

the left most column being the most accurate. The first set is computed using an

eigenvalue having a relative accuracy of 2 -4. The second set uses an eigenvalue with

a relative accuracy of 2-36. The relative accuracy of the eigenvalue for the third set

is 2-36. For the fourth set, the first order Newton-Raphson iteration of the mode

location is set at an absolute accuracy of 0.03 of the mesh size, same as that specified

in the original program. The eigenvalue for the right most set is the mode location

estimated by ROOTS without modification by the Newton-Raphson iteration. It is
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TABLE 1. IMPROVING A ACCURACY WITH EIGENVALUE 18 M DUCT
mode 4 q-eigenvaLue: .18885743251760300 .10806774810590D-01
eigenvaLue difference: .00D+00 .000+00 -. 490-13 -. 660-15 .12D-11 -. 12D-10 .150-06 .60D-07

Layer # Ai/down Al/dwn Ai/down Al/don Ai/down
Layer # Al/up Al/up Al/up Ail/up Al/up

18 .0261 .6719 .0261 .6719 .0261 .6719 .0261 .6719 .0261 .671
18 .0261 .6719 .0261 .6719 .0261 .6719 .0261 .6719 .0261 .671

17 -.0625 .6368 -.0625 .6368 -.0625 .6368 -.0625 .6368 -.0625 ."&
17 -.0625 .6368 -.0625 .6368 -.0625 .6368 -.0625 .6368 -.0625 .6361

16 .0139 .7440 .0139 .7440 .0139 .7440 .0139 .7440 .0139 .744(
16 .0139 .7440 .0139 .7440 .0139 .7440 .0139 .7440 .0139 .744

15 .1216 .6353 .1216 .6353 .1216 .6353 .1216 .6353 .1216 .6353
15 .1216 .6353 .1216 .6353 .1216 .6353 .1216 .6353 .1216 .6353

14 .0166 .5471 .0166 .5471 .0166 .5471 .0166 .5471 .0166 .5471
14 .0166 .5471 .0166 .5471 .0166 .5471 .0166 .5471 .0166 .5471

13 -. 1565 .5310 -. 1565 .5310 -. 1565 .5310 -. 1565 .5310 -.1565 .531'
13 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .5310 -.1565 .531

12 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3843 .5659
12 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3842 .5659 -.3842 .5659

11 -2.2002 -. 8081 -2.2002 -. 8081 -2.2002 -. 8081 -2.2002 -. 8081 -2.1909 -. 8W
11 -2.2002 -. 8081 -2.2002 -.8081 -2.2002 -. 8081 -2.2002 -. 8081 -2.2002 -. 8081

10 -5.4648 .2423 -5.4648 .2423 -5.4648 .2423 -5.654 .2423 -4.1810 -.2161
10 -5.4648 .2423 -5.4648 .2423 -5.4648 .2423 -5.4648 .2423 -5.4647 .2423

9 -3.6974 -.6979 -3.6974 -. 6979 -3.6974 -.6980 -3.6783 -. 7012 -6.4611 -. 2121
9 -3.6978 -. 6978 -3.6978 -. 6978 -3.6978 -. 6978 -3.69?8 -. 6978 -3.6977 -. 6978

8 .3459 -. 7982 .3459 -. 7982 .3460 -. 7982 .3482 -. 7926 -1.9078 -. 91
8 .3459 -. 7983 .3459 -. 7983 .3459 -. 7983 .3459 -. 7983 .3459 -. 7983

7 .4098 .8794 .4098 .8794 .4098 .8794 .4136 .8836 -1.0899 .5364
7 .4097 .8793 .4097 .8793 .4097 .8793 .4097 .8793 .4097 .879

6 .3480 .8161 .3480 .8161 .3480 .8161 .3526 .8205 -.5879 .4005
6 .3479 .8160 .3479 .8160 .3479 .8160 .3479 .8160 .3479 .8160

5 .2923 .8304 .2923 .8304 .2923 .8304 .2972 .8358 -.3490 .3749
5 .2922 .8303 .2922 .8303 .2922 .8303 .2922 .8303 .2922 .8303

4 .2359 .8619 .2359 .8619 .2360 .8619 .2408 .8690 - .2058 .3731
4 .2358 .86'8 .2358 .8618 .2358 .8618 .2358 .8618 .2358 .861

3 .1831 .8910 .1831 .8910 .1832 .8910 .1878 .9003 -. 1250 .375
3 .1831 .8908 .1831 .8908 .1831 .8908 .1831 .8908 .1831 .

2 .1300 .9149 .1300 .9149 .1301 .9149 .1342 .9275 -.0734 .375
2 .1300 .9146 .1300 .9146 .1300 .9146 .1300 .9146 .1300 .9146

1 .0586 .9335 .0586 .9335 .0588 .9335 .0618 .9545 -. 0318 .3670
1 .0586 .9331 .0586 .9331 .0586 .9331 .0586 .9331 .0586 .9331
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clear that, for this mode, the difference between these two methods of computing the

coefficients becomes negligible as the accuracy in mode location increases. For

example, in the 8-th layer, the magnitude of Ai computed by integrating downward

changes from -1.9078 to 0.3482, to 0.3460 to 0.3459, which agrees with the result

computed by integrating upward. The phase follows the same trend to an agreement

within 0.001 r. Table 2 shows a similar set of output, but the coefficients fail to agree

even when the relative accuracy is increased to 2 "40. Note that the actual difference

in both the real part and the imaginary part of the two most accurate eigenvalues is

about 2 -48. Double precision accuracy appears to be insufficient for the coefficients

computed with these two methods to agree for all modes. Some interesting features

can be observed in both tables, which are present in all 120 sets of values computed.

When disagreement is present in one set of Ai coefficients, such as those in either

Table 1 or Table 2, the change toward smaller differences with improving eigenvalue

accuracy occurs mainly in one way of computation, but not both. For example, in

Table 1, the values of "integration downward" improve with better eigenvalue

accuracy, while those computed by "integrating upward" change little. In Table 2, the

results of "integration downward" are the ones that are holding steady as the accuracy

in eigenvalue improves. Furthermore, when disagreement occurs, the layer in which

the Ai coefficient has the smallest magnitude, i.e., the one having the most negative

power of 10, divides the table into two parts. The results of two different ways of

computation agree in the layers above this one if they disagree in those below it, and

vise versa. No explanation will be attempted. Instead, practical rules are drawn up
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TABLE 2. IMPROVING A, ACCURACY WITH EIGENVALUE 36 M DUCT

mode 3 q-eigenvatue: .3148000164781392D+00 .14796229M7M7200 2-0,
eigenvalue difference: .38D-14 .360-14 .38D-14 .360-14 -. 160-09 -. 22D-09 -. 53D-07 .280-07

toyer S Al/down Al/down Ail/down Al/down Ai/dowm
Layer # At/up Af/lp Ai/up Ai/up Ai/&p

27 -.0009 .6663 -.0009 .6663 -.0009 .6663 -.0009 .6663 -. 0009
27 .2353 .7582 .2353 .7582 .2353 .7582 .2353 .7582 .2353

26 .0007 .6678 .0007 .6678 .0007 .6678 .0007 .6678 .0007 .66
26 -.0111 .3659 -.0111 .3659 -.0111 .3659 -.0111 .3659 -.0111 .365

25 .0022 .6657 .0022 .6657 .0022 .6657 .0022 .6657 .0022 .6657
25 -1.8851 .3913 -1.8851 .3913 -1.8851 .3913 -1.8851 .3913 -1.8852 .3913

24 .0001 .6809 .0001 .6809 .0001 .6809 .0001 .6809 .0001 .6809
24 -7.4914 .6081 -7.4914 .6081 -7.4914 .6081 -7.4914 .6081 -7.4914 .6081

23 -2.9495 .5951 -2.9495 .5951 -2.9495 .5951 -2.9495 .5951 -2.9495 .5951
23 -14.5340 .7973 -14.5340 .7973 -14.5340 .7973 -14.5340 .7973 -14.5340 .7973

22 -12.1956 .9278 -12.1956 .9278 -12.1956 .9278 -12.1956 .9278 -12.1956 .9278
22 -23.5827 -. 9407 -23.5827 -. 9406 -23.5827 -.9406 -23.5827 -. 9406 -23.5827 -.9406

21 -35.2395 -.2502 -35.2395 -.2502 -35.2395 -.2502 -35.2395 -. 2502 -35.2396 -. 2501
21 -44.4517 -.8199 -45.8691 .8599 -45.8691 .8599 -47.4590 -.1252 -47.4594 -. 1251

20 -131.3304 -.9570 -131.3304 -.9570 -131.3304 -.9570 -131.3304 -.9570 -131.3307 -.9569
20 -129.0146 -. 2961 -127.6070 .0248 -127.6070 .0248 -122.9124 -.9081 -120.9305 .8279

19 -25.6088 -. 9230 -25.6088 -. 9230 -25.6088 -. 9230 -25.6088 -. 9230 -25.6088 -. 923
19 -25.6090 -.9228 -25.6184 -.9241 -25.6184 -. 9241 -22.5644 -. 8054 -20.2166 .7391

18 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.6970 .651
18 -13.6970 .6510 -13.6970 .6510 -13.6970 .6510 -13.0618 .7675 -10.8148 .344

17 -7.0384 .4145 -7.0384 .4145 -7.0384 .4145 -7.0384 .4145 -7.0384 .414.
17 -7.0384 .4145 -7.0384 .4145 -7.0384 .4145 -7.0308 .4179 -6.3129 .1800

16 -3.3146 .2991 -3.3146 .2991 -3.3146 .2991 -3.3146 .2991 -3.3146 .2991
16 -3.3146 .2991 -3.3146 .2991 -3.3146 .2991 -3.3146 .2991 -3.3116 .2970

15 -2.3132 .2632 -2.3132 .2632 -2.3132 .2632 -2.3132 .2632 -2.3132 .263
15 -2.3132 .2632 -2.3132 .2632 -2.3132 .2632 -2.3132 .2632 -2.3127 .2

14 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .241
14 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5669 .2415 -1.5668 .241

13 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .235
13 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .2352 -1.0838 .235

12 -. 6983 .2432 -.6983 .2432 -.6983 .2432 -. 6983 .2432 -.6983 .243
12 -.6983 .2432 -.6983 .2432 -. 6983 .2432 -.6983 .2432 -. 6983 .243

11 -.3754 .2712 -.3754 .2712 -.3754 .2712 -.3754 .2712 -.3754 .271
11 -.3754 .2712 -.3754 .2712 -.3754 .2712 -.3754 .2712 -.3754 .271

10 -.0102 .3619 -.0102 .3619 -. 0102 .3619 -. 0102 .3619 -.0102 .361
10 -.0102 .3619 -.0102 .3619 -.0102 .3619 -.0102 .3619 -.0102 .361
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to take advantage of these facts. In Table 1, the process of "integration upward" goes

through the troublesome 10-th layer and produces results which agree with the results

of downward integration before the downward process goes through the 10-th layer.

On the other hand, the downward integration is tripped up going across the 10-th

layer and produces results which fail to agree with the results from upward

integration. It is clear that the results from upward integration are the correct ones.

This conclusion is further supported by the fact that improving the accuracy of the

eigenvalue does not change significantly the results of upward integration. Similar

argument leads to the conclusion that in Table 2, the results of downward integration

are the correct values.

It can be concluded from the above observations that one of the methods of

computing the Ai coefficients converges to the correct value much faster than the

other. It is also found that this method of faster convergence is always able to arrive

at the correct values for Ai for all the cases under investigation.

Table 3 lists the statistics of the method of integration which yields the correct

Ai coefficients for each of the 120 modes investigated. The differences in magnitudes

and phases in the lowest layer and in the layer below the highest are also listed.

Since for most of the cases, when disagreement in Ai values occurs, the correct

integration is upward -this is used as the default. To decide that downward

integration should be utilized, the following steps are taken: The first Ai value of

downward integration is computed and compared to the value from upward

integration. If the magnitudes in dB disagree by less than 0.02 dB, their phases will
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be checked. If the phases differ by less than 10 -3w, the agreement is deemed

acceptable and the Ai and Bi coefficients computed from the lowest layer up are

used. Otherwise, the coefficients are re-evaluated again from the highest layer down.

Once the correct method of evaluating the Ai and Bi coefficients is used, the

accuracy of the mode location becomes less critical. For all the cases investigated,

the Ai coefficients obtained from mode locations estimated with or without the

Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and

0.0013Y in phase at most. In fact, few cases show differences more than 0.002 dB

and 0.00017r. The Newton-Raphson iteration is not needed. Hence the subroutines

NOMSHX, FDFDTX and DXDETR are removed.
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TABLE 3. STATISTICS FOR EVALUATING A COEFFICIENT

A II (dB) Aarg(A,)Iic
Duct Mode # Evaluating Method

height

LAYer lAyer

up down bottom top-I bottom top-1

1 x

2 x

3 x
02 4 x 0.172 0.093

5 x

6 x 8.362 1.3234
1 x

2 x

3 x 0.008 0.0002
04 4 x 1.030 1.8717

5 x 7.814 12948

6 x 0.002 0.0001

1 x

2 x 0.002 0.0004

3 x 0.522 0.0158
06 4 x

5 x 13.278 0.4377

6 x 0.002 0.0001

1 x

2 x 0.002

3 x 0.002 0.0001 0.0001
08

4 x 0.016 0.0026

5 x 4.066 0.6355
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TABLE 3. CONTINUED 1.

AIAI (dB)
Duct Mode # Evaluating Method

Layer Layer

up down bottom top-1 bottom top-1

1 x
2 x 0.0002

3 x 0.0001
10 4 x 0.04 0.0008

5 x 0.206 0.0402 0.0001

6 x 0.002 0.0001

1 x

2 x 0.006 0.0003

3 x 0.004
12 4 x 1.808 0.35661

5 x 1.732 0.5429

6 x 1.472 0.0414

1 x

2 x 0.002 0.0001

3 x 0.178 0.0052
14 4 x 0.024 0.0005

5 x 0.004 0.0001

6 x 0.85 0.4711
1 x

2 x 0.006 0.0002

3 x 0.004
16

4 x 0.006 0.0001

5 x 0.002 0.0001
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TABLE 3. CONTINUED 2.

A IA, I (dB) Aarg(A,)/x
Duct Mode # Evaluating Method

height

Layer Layer

up down bottom top-i bottom top-i

I x 0.008 0.0001

2 x 0.002 0.0001

3 x 0.0001
18 4 x

5 x 0.016 0.0003

6 x 0.002

1 x 0.078 0.0164

2 x

3 x 0.002 0.0001

204 x 0.0008

5 x 0.16 0.0195

6 x 0.002 0.0001

1 x 8.708 0.239

2 x

3 x 0.004
224 x 0.016

5 x 0.002 0.0001

6 x 031 0.0117

1 x

2 x 0.868 0.2842
3 x 0.006 0.0009

24 4 x 0.002 0.0001

5 x 0.026 0.0009

6 1 or0.os I ~o2
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TABLE 3. CONTINUED 3.

A IAj (dB) Aarg(A1 )Iiz
Duct Mode # Evaluating Method

height

lAyer Layer

up down bottom top-1 bottom top-l

1 x 0.002 0.002 0.0001 0.0001

2 x 4.308 0.121

3 x 0.006
26 4 x 0.002 0.0001

5 x 0.0001

6 x 0.034 0.0039

1 x 0.028 0.0014

2 x 4.806 0.0728

3 x
28 4 x

5 x 0.008 0.002 0.0002

6 x 0.004 0.0019

1 x 1.562 0.0165

2 x

3 x 0.718 0..2455
30 4 x

5 x 0.004

6 x 0.724 0.0522

1 x 3.194 0.1648

2 x 0.002

3 x 13.12 0.1026
32

4 x 0.002

5 x 0.382 0.0099
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TABLE 3. CONTINUED 4.

A IA, (dB) Ar(,I
Duct Mode # Evaluating Method

height

l~yerlAyer

up down bottom top-I bottom top-i

1 x 0.002 0.002
2 x 13.456 0.0311

3 x 1.014 02347
34 4 x

5 x 0.03 0.0006

6 x 0.014 0.0006

1 x 0.0001 0.0014

2 x 1.686 0.2224

3 x 4.724 0.0919
36 4 x

5 x 0.006 0.0001

6 x 0.02 0.0001

1 x 0.996 0.0115

2 x 4.974 0.0152

3 x
38 4 x S.052 0.0417

5 x 0.0001

6 x 0.002

1 x 0.002 0.002

2 x 3.85 0.1226

3 x 3.568 _0.155

40
4 x 3.448 0.1678

5 x 0.0001

31



III. CONCLUSIONS AND RECOMMENDATIONS

A. Performance

This revision of M-Layer converts the extended complex number representation

of an exponentially large or small number into the direct representation by its

complex exponent. The accuracy of the computation has been improved in two ways:

First, an interpolation algorithm has been devised when severe cancellation of the

addends is detected. Secondly, accuracy for the evaluation of the Airy function has

been improved, not just by summing the Taylor series to double precision resolution

and by adopting six-term Gaussian quadrature, but also by expanding the region

within which the more expedient Gaussian quadrature is excluded in favor of the

more accurate, but time-consuming, Taylor series summation. The improvement in

accuracy is most easily seen from Table 1.

As discussed in the Introduction, evaluating the A i and Bi coefficients either

from the lowest layer up (integration up), or from the top layer down (integration

down), must result in the same values. This property provides a consistency check

for the accuracy of the computation. For the six modes of lowest range attenuation

rates of the 20 profiles of different duct heights, Table 1 lists the maximum

difference for each mode which shows a discrepancy between these two methods of

evalu .ting the Al coefficients. For each profile, the maximum value in magnitude
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TABLE 1. MAXIMUM DIFFERENCE IN A COEFFICIENT BE'IWEEN

INTEGRATION UP AND DOWN

Difference in A coefficient

Duct Mode Magnitude difference in Phase difference over

height # (dB) 0.1 7

old new old new

4 5.22 Yes
02 6 61.16 Yes

4 22.46 2.3
04 5 106.9 Yes

06 3 8.62 Yes

5 32.36

5 77.84 Yes
0808 6 44.9 Yes

10 5 Yes

4 69.38 Yes

12 5 46.32 Yes

6 7.46 Yes

14 6 30.6 Yes

22 1 8.64 YCS

24 2 80.48 Yes

26 2 110.68 Yes

28 2 150.9 67.68 Yes Yes

30 3 173.28 143.42 Yes Yes

1 11.38 Yes
32

3 525.04 188.04 Yes Yes
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TABLE 1. CONTINUED

Difference in A coefficient
Mode Magnitude difference in Phase difference over

Duct (dB) 0.1 V
height

old new old new
2 37.98 _______ Yes

34 3 715.7 209.94 Yes Yes

2 112.74 Yes
36 3 957.92 231.68 Yes Yes

2 107.44 52.26 Yes Yes

38 4 1249 255.8 Yes Yes

3 167 112.72 Yes Yes
40 4 823.56 258.18 Yes Yes

Magnitude difference within 2dB are not listed.

difference in dB among all the layers is listed if it is greater than 2. If the phases of

the coefficients deviate more than 0.17r in any layer, that particular mode is also

singled out. The location of the mode of the revised program is within a relative

accuracy of 2- 40 achieved through first order Newton-Raphson iteration. Even

though discrepancies still exist when the duct is 28 meters or higher, it is clear that

the revised program computes more accurately than the original one.

For the cases where the two methods of evaluating the A i and B i coefficients

disagree, it has been observed that one of the methods always leads to A i values

which are little changed when the accuracy in mode location is varied, while the

other method produces Ai values which shift toward the results of the other method
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as the accuracy of mode location improves. Based on this observation, a consistency

check is implemented into the program to identify the method which converges

better. For the 120 cases investigated, when this method of faster convergence is

used, the Ai coefficients obtained from mode locations estimated with or without the

Newton-Raphson first order iteration differ only by 0.06 dB in magnitude and

0.0013 r in phase at most. In fact, few cases show differences more than 0.002 dB

and 0.0001 7r. This allowed the Newton-Raphson iteration to be removed in this

revision.

Table 2 compares the performance between the original and the revised

programs. The time spent to find the modes has been reduced by an average of

22.58%. The revised program can always produce the modes found by the original

program. Moreover, the mode search is stable for the new program: the time it

requires to search for the modes is about the same for similar profiles. The sudden

jumps in mode search time for the 24 m and the 40 m cases, which indicate troubles

during the search, no longer happen.

With the proper method of evaluating the A, and Bi coefficients determined by

the consistency check, the output of the revised program differs from the original

program in some cases. The most serious deviation has been observed for the 38 m

duct height case as shown in Tables 3 and 4. For example, at a range of 36.5 km

with the transmitter at a height of 25 m and the receiver at 10 m, the coherent path

loss is 175.93 dB from the original program, and is 167.90 dB from the revised

program.
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TABLE 2 OVERALL MODE SEARCH PERFORMANCE COMPARISON

DUCT ORIGINAL REVISED
HEIGHT Time
(meter) Time Modes Time Modes Improvement

00 0:00:37 3 0:00:35 3 5.40%

02 0:32:14 9 0:31:55 9 0.98%

04 1:14:12 25 1:05:04 25 12.31%

06 2:10:18 53 1:56:50 53 10.33%

08 0:35:58 39 0:29:25 39 18.21%

10 0:53:24 59 0:48:32 61 9.11%

12 1:09:40 86 1:01:44 89 11.39%

14 1:20:42 94 1:11:13 97 11.75%

16 1:54:35 95 1:18:07 97 31.82%

18 1:45:09 100 1:27:15 104 17.02%

20 1:46:19 103 1:34:20 105 11.27%

22 1:52:54 105 1:35:18 106 15.59%

24 3:42:59 106 1:46:47 107 52.11%

26 2:07:42 106 1:43:55 108 18.62%

28 2:00:05 107 1:44:59 109 12.57%

30 1:59:59 107 1:46:19 108 11.39%

32 1:55:29 108 1:42:58 110 10.84%

34 2:29:57 109 2:15:58 111 9.32%

36 2:31:40 109 2:17:20 112 9.45%

38 2:38:44 110 2:18:09 111 12.97%

40 5:41:17 95 2:39:39 111 53.22%

Total 40:23:54 31:16:22 22.58%
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TABLE 3. ORIGINAL PROGRAM 38 M DUCT OUTPUT
frequency = 9600.0000 mhz

range zt zr coherent incoherent coherent incoherent horizon
(kin) (m) (m) mode aum mode as.. path toss path loss (km)

(dIB) (dB) (€lM) (€lB)

27.3 25.0 4.0 -15.30 -15.62 156.10 156.43 28.9
27.3 25.0 6.0 .62 -2.35 140.18 143.16 30.7
27.3 25.0 8.0 -1.11 -4.21 141.92 145.01 32.3
27.3 25.0 10.0 -27.26 -12.66 168.06 153.46 33.6
36.5 25.0 4.0 -16.94 -16.62 160.28 159.96 28.9
36.5 25.0 6.0 -. 73 -2.05 144.07 145.39 30.7
36.5 25.0 8.0 -2.21 -3.72 145.55 147.06 32.3
36.5 25.0 10.0 -32.59 -14.29 175.93 157.64 33.6
45.8 25.0 4.0 -19.89 -16.96 165.20 162.26 28.9
4r,.8 25.0 6.0 -2.81 -1.89 148.11 147.19 30.7
45.8 25.0 8.0 -4.11 -3.43 149.41 148.74 32.3
45.8 25.0 10.0 -28.57 -15.22 173.88 160.52 33.6

TABLE 4. REVISED PROGRAM 38 M DUCT OUTPUT
frequency = 9600.0000 mhz

range zt zr coherent incoherent coherent incoherent horizon
(km) (m) (m) mode sum mode sun path loss path loss (kin)

(€M) (cB) (cM) (cdB)

27.3 25.0 4.0 -14.38 -15.66 155.18 156.47 28.9
27.3 25.0 6.0 .42 -2.37 140.39 143.18 30.7
27.3 25.0 8.0 -1.52 -4.21 142.33 145.02 32.3
27.3 25.0 10.0 -21.20 -12.51 162.01 153.31 33.6
36.5 25.0 4.0 -17.32 -16.60 160.66 159.94 28.9
36.5 25.0 6.0 -.48 -2.08 143.82 145.42 30.7
36.5 25.0 8.0 -1.62 -3.73 144.96 147.07 32.3
36.5 25.0 10.0 -24.56 -14.04 167.90 157.38 33.6
45.8 25.0 4.0 -20.26 -16.93 165.57 162.23 28.9
45.8 25.0 6.0 -3.14 -1.93 148.44 147.23 30.7
45.8 25.0 8.0 -4.62 -3.46 149.92 148.76 32.3
45.8 25.0 10.0 -25.40 -14.90 170.71 160.21 33.6
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B. Recommendations

The mode search protocol of this program needs to be revised. Since the

search is limited by the number of modes to be found and the maximum range

attenuation rate accepted, it is more logical to begin with locating the mode of the

lowest attenuation, and then proceed to look for the next one in the order of

increasing attenuation rate. Furthermore, there appears to be only a single 'phase

line' of vanishing real part of the modal function on which all the modes are located.

This line extends from lower to higher range attenuation rates. The partition of the

search region into rectangles, as has been done in this program, tends to cut the

"phase line" into segments before the program starts to search for the end points of

these segments and then follow the segments in different directions. It is clear that

a better way for mode search is to find the lower end of the single "phase line" then

follow it to the other end.
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APPENDIX A: SUBROUTINE XCADD

This Appendix lists the addition subroutine XCADD which returns the complex

exponent of the sum when the complex exponents of the addends are given. This is

a complete re-write of the original subroutine of the same name.
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subroutine xcedd~zx,zlx~z~x)

2 C

3 c Given zIx and z2x, this subroutine adds the two complex numbers

4 c zl-exp~zlx) and z2zexpcz2x) for zoexp~zx) and returns zx.

5 c

6 c inputs...

7 C zlx=coqWLex exponent of the complex number zi

8 c z2x=comptex exponent of the complex number z2

9 C
10 c outputs...

11 C zx=comptex exponent of the complex nsuber z

12 c

13 c subroutines called...

14 c

15 c*****

16 implicit reaL*8 Ca-h~o-z)

17 compLex*16 zx.zlx~z2x,ztlx,zt2x,clogzh,dstwn~czero~cerrx,cone,chpi

18 paraleter(pi=3.141592653589793238462643d0,twopi:
2.d*pi,

19 + hpi:0.5d0*pi~zerozo.dO~c16=1.dO/6.do,

20 + bitl4zl.dO/16384.d0.bit24=bft14/1024.d0.ctolcbitl4,

21 + dpi=2259.dO/4294.967296.d4294967296.dhpidiI2.dO,

22 + e2m54-3. 742994775023704819d.e2p27=-0.5d0*e2m54,

23 + chpis-(O.dO,1.57079632679489661923132d).coneal.dO,O.dO),

24 + czero(0.d0,0.d0),cerrx(3.742994775023704819d1,O.dO))

25 c cerrxze2m54m-54*lo(2)=exponent below machine accuracy

26 dimension ztnp(2),stnp(2)

27 equivalence (ztnp,clogzh),(st11p,dsuS)

28 c**

29 c Replace the input variables with a local variable so that

30 c equations in the form of y-x~y will not lead to confusion.

31 c

32 ztlx~zlx

33 zt2xzz2x

34 c

35 ctogzh=0.5d0*ztlx-zt2x)

36 dxhzztirp(1)

37 if~dxh Alt. zero) then

38 zxazt2x
39 dxh=-dxh

40 else

41 zxaztlx

42 end if

43 c****

",. c machine accuracy 2**(-3)

45 c 2*(27)se**2p27

40



46

47 if (dxh .ge. e2p27) then

48 return

49 else

50 zx-0.5dO*(ztlx+zt2x)

51 dstm-cdexp(ctogzh)

52 dLux .d/dsumdsum

53 if (cdabe(dsum) .gt. ctot) then

54 zx=cdtog(dswm)+zx

55 else

56 c Cancellation is serious. lm[ctogzhl is close to pt/2 or -pi/2.

57 yidn int(ztmp(2)/twopi )*2.dO

58 ztmp(2)mztp(2)-pi*yi

59 dyi. clpi*yi

60 if (ztmp(2) .Lt. zero) then

61 ctogzh=-ctogzh

62 dyi--dyi

63 end if

64 ztmp(2)=(ztmp(2)-hpi )-hdpi-dyi

65 dsuRw2.dO*ctogzh*(cone+cl6*cLogzh*c€ogzh)
66 if (cdsun .eq. czero) then

67 c Note that a complete cancelation of two nonzero numbers of

68 c order one is considered to be as accurate as what is allowed

69 c by the machine and the algorithm.

70 zx=cerrx~chpi+zx

71 else

72 dsuppcdlog(cdsum)

73 if (stmrp(l) .t. e2m54) stmp(1)=e2m54

74 zx=dsum+chpi+zx

75 endif

76 endif

77 return

78 end if

794c
so and
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APPENDIX B: SUBROUTINE FZEROX

This Appendix includes the listing of the subroutine FZEROX which searches

identifies the meshes which may contain modes within a contour rectangle. The

Shellman-Morffit mode locating algorithm has been completely replaced.
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1 subroutine fzerox(tLeft,tright,tbot,ttop,tmshO,zerosni,nf)

2 c*****

3 c fzerox is a routine for finding the zeroes of a coqplex function, f,

4 c which tie within a specified rectangular region of the

5 c complex qil plane, assuming that the function has only

6 c simple zeroes over this rectangle.

7 c

8 c parameters specifying the search rectangle:

9 c tteft - value of the reat part of ql at the left edge.

10 c tright- value of the real part of qil at the right edge.

11 c tbot - value of the imaginary part of qil at the bottom edge.

12 c (this is set to 0.)

13 c ttop - value of the imaginary part of qll at the top edge.

14 c tmesh - set equal to about half the average spacing between

15 c zeroes within the rectangle. A smatter value my be used

16 c as a safety measure, but too small a value will result

17 c in excessively long run time.

18 c zeros - output list of (complex) values of ql at which

19 c zeroes are found.
20 c nf-ni - the number of zeroes found

21 c

22 c subroutines catledd--

23 c findfx
24 c roots

25 c nomshx

26 €*****

27 implicit double precision (a-h,o-z)

28 comptex*16 flO,fOlfll,fxnew,fxoid,fxOO,fxlO,fx0l,fxll,

29 + czero,one,ci,sot,zeros

30 parameter(czero=(O.dO,O.dO),one=(1.dO,O.dO),ci(O.dO,1.d))

31 Sinclude: 'mlaparm.inc'

**** Begin listing of: mtaprm.inc

1 c

2 c include file to define the

3 c maxinun # of layers (mxtayr)

4 c maximum # of modes (mxmode)

5 c

6 parameter (mxtayr-35)
7 parameter (mxmode=127)

***** End listing of: mtsparm.inc

32 dimension kedgel(100),kedge2(100),kedge3(100),kedge4(100),
33 c + tocl2r(mxmode), Loc12i(mxmode), toc23r(mxmode). toc23i(mxmode),

3/ c + toc34r(mxmode), toc34i(mxmode), toc4lr(mxmode), toc4 i (mxmode),

35 + sol(3),theta(2),zeros(*mxmode+l)

36c
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37c
38 common Itmccom/tmesh
39 c*'***

40 c mmxntsq - viaxian nuaer of mesh squares atLowied an any one
41 c phase Line
42 c mxnt - imaxi"m ru~r of time Izerox will reduce tmesh
43 c

44 mxnsq=3*mx0CintC(ttop-tbot)/tmeh0). nt(Ctright-tleft)/tumhO))
45 maxnt=2

46 c**

47 tmesh x tushO

48 ntime a0

49 go to 7

50 C

51 5 tmesh-tmesh/2.OdO

52 ntime z ntime+1

53 if(ntime .gt. maxnt) go to 97

54 c

55 7 continue

56

57 c****

58 c catcutate coordinates of rectangle edges in tmesh units

59 c
60 itt - idnint(tteft/tuiesh-0.5d0)

61 irt - id*nnt(tright/tmesh+0.5dO)

62 itop =ickint(ttop/tmesh.1.5d0)

63 jbot -0

64c

65 c initialize parameters for starting search at up~per left

66 c corner of search rectangle

67 c

68 ki =jtop
69 krajltt

70 kedgezi1

71 call findfx(kr,ki,fxnew~xniew,ynew)

72 nrei=0

73 nre2=0

74 nre3=0

75 nre4=O

76 knotI~zO

77 knot23=0

78 knot34u0

79 knot4l=0

80 nfuni

81 nilzni.1
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82 go to 15

83 c****

84 10 continue

85 if~nrzt ALt. 2) go to 15

86 c wite(16,2000) nrzl

87 go to 5

8W 15 nrzLz0

89 nrsqu a0

90 20 fxoldmfxnew

91 xoldzxnew

92 yotd-ynew

93 go to C21,26,31.36),kedge

94 c***

95 c search along Left edge of rectangle for changes in the

96 c sign of img~f)

97 C

98 21 continue

99 if(ki.eq.jbot) then

100 kedger2

101 go to 26

102 end if

103 ki zki-1

104 call findfx~kr,ki~fxnew,xnew,ynew)

105 if CyoLdynew .gt. 0.dO) go to 20

106 if(nrel.eq.0) go to 23

107 c

108 c check if crossing point has been previously found

109 c

110 do 22 k=1,nrel

III if(ki.eq.kedgel(k)) go to 20

112 22 continue

113 c

114 c follow phiase Line through rectangular region

15 c

116 23 fx0 =fxoLd

117 fx~lruxotd

118 fx~lizyotd

119 fxCO-fxnew

120 fx00rzxww

121 fxD0izynew

122 til-kl

123 Ir ajt

124 go to 43

125 c****

126 c search &Long bottom edge of rectangle for changes in the
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127 c sign of img(f)

128 c

129 26 continue

130 If(kr.eq.jrt) then

131 kedge=3

132 go to 31

133 end if

134 krakr+1

135 call findfx(krki.fxrmxnew.yne")

136 If (yoLdynew .9t. O.dO) go to 20

137 if(nre2.eq.0) go to 28

138 c

139 c check if crossing point has been previously found

140 c

141 do 27 kzl,nre2

142 if(kr.eq.kedge2(k)) go to 20

143 27 continue

14 c

145 c fotlow phase line through rectangular region

146 c

147 28 fxOO=fxotd

148 fxOOrsxotd

149 fxOOixyold

150 fxlOffxnew

151 fxlOrsxnew

152 fxlOioynew

153 t i jbot

154 ir a kr-I

155 go to 48

156 c*****

157 c search along right edge of rectangle for sign changes in img(f).

158 c

159 31 continue

160 ff(ki.eq.jtop) then

161 kedge-4

162 go to 36

163 end if

164 ki a ki+1

165 caLl findfx(kr,kfxnewxneynew)

166 if (yotld*ynew .gt. O.dO) go to 20

167 if(nre3.eq.0) go to 33

168 c

169 c check if crossing point has been previously found

170 c
171 do 32 kal,nre3
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172 lf(ki.eq.kedge3(k)) go to 20

173 32 continue

174 c
175 c follow phase tine through rectangular region

176 c

177 33 fxlOmfxotd

178 fxlOrzxotd

179 fxOizyotd

180 fxll=fxnew

181 fxllr=xnew

182 fxlliynew

183 Li a ki-1
184 tr = jrt-1

185 go to 53

186 c*****

187 c search along top edge of rectangle for sign changes in imag(f).

188 c

189 36 continue

190 if(kr.eq.jtt) go to 80

191 kr = kr-1

192 call findfx(kr,ki,fxnew,xnew,ynew)

193 if (yotd*ynew .gt. O.dO) go to 20

194 if(nre4.eq.0) go to 38

195 c

196 c check if crossing point has been previously found

197 c

198 do 37 kalenre4

199 ff(kr.eq.kedge4(k)) go to 20

200 37 continue

201 c

202 c follow phase Line through rectangular region

203 c

204 38 fxll=fxotd

205 fxllr-xold

206 fxlli=yotd

207 fxOl=fxnew

208 fx0lrxnew

209 fx0liuynew

210 if a jtop-1

211 tr a kr

212 go to 58

213 c****"

214 c enter mesh square from left side or exit rectangle at right edge.

215

216 41 trslr.1
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217 If (tr .e. jrt-1) go to 42

218 nre3=nre3+1

219 kedgo3(nre3)xLi+1

220 go to 10
221 42 fxOzfxil

222 fxO1rxfxl1r

223 fxOllifxlli

224 fxOO=fxlO

225 fxOOr=fxlOr

226 fxOOiUfxlOi

227 43 continue

228 caLl findfx(tr+l,ti+1,fx11,fxllr,fx1li)

229 caLl findfx(Lr+lLi,fxlO,fxl0r,fxl0i)

230 C**

231 c Determine the edge of exit of im(f):O from current mesh.

232 edgei t=fxOl i*fxl 1 i

233 edgeib=fxOOi*fxlOi

234 if (edgeib .gt. O.dO) then

235 c lm(f)=O goes through the 01 to 10 Line.

236 if (edgeit .gt. O.dO) then

237 c Im(f)=O goes through the 10 to 11 edge (edge 1).

238 lout=1

239 else

240 c Im(f)=O goes through the 01 to 11 edge (edge 2)

241 tout=2

242 end if

243 else

244 c lm(f)=O goes through the 00 to 10 edge (edge 4)

245 Lout=4

246 if (edgeit it. O.dO) then

247 c lm(f)=O also runs through 01 to 11 and 10 to 11 edges.

248 c Store crossing Location and in/out information.

249 knot34=knot3l+1
250 c loc34r(knot34):r

251 c loc34i(knot34)=Li

252 end if

253 end if

254 c*******

255 go to 60

256 c*****

257 c enter mesh square from bottom side or exit rectangle at top edge.

258 46 LI=Li+l

259 If (Ii .Le. jtop-1) go to 47

260 nre4xnre4+1
261 kedge4(nre4)ztr
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262 go to 10

263 4.7 fx00zfx~i

264 fx00rxfx~ir

265 fxooiufxoli

266 fxlOzfxll

267 fxI~rwfxIlr

268 fx 0Izfxlli

269 48 continue

270 call findfx(1r,114 ,fxol,fx~lr,fxOli)

271 call findfx~tre1,li.1,fxll,fxllr,fxlli)

272 c*****

273 c Determine the edge of exit of iu,(f)=0 from current mesh.

274 edgei Lzfx00i*fxOl i

275 edgeir-fxlifxlli

276 if (edgeir .gt. 0.dO) then

277 c Im(f):0 goes through the 00 to 11 Line.

278 if Cedgeil .gt. 0.dO) then

279 c Im(f)=0 goes through the 01 to 11 edge (edge 2)

280 lout=2

281 else

282 c Im(f)z0 goes through the 00 to 01 edge (edge 3).

283 Lout=3

284 end if

285 else

286 c lm(f)=0 goes through the 10 to i1 edge (edge 1)

287 tout=1

288 if (edgeil .Lt. 0.dO) then

289 c Im~f)=0 also runs through 00 to 01 and 01 to 11 edges.

290 c Store crossing Location and in/out information.

291 knot4lknot4l.1

292 c loc4lr(knot4l)2Lr

293 c loc41i(knot41)=Li

294 end if

295 end if
296 c****

297 go to 60

298 c***

299 c enter mesh square from right side or exit rectangle at left edge.

300

301 51 Lr=Lrl1

302 if (tr .ge. ut) go to 52
303 nrelznreI.1

304 kedgeldnrel)=Li

305 go to 10

306 52 fxll-fxO1

49



307 fxllrufxOlr

308 fxllinfX0ll

309 fx1OufxOO

310 fxlOrutxOOr

311 fxloizfx00i

312 53 continue

313 call findfxCir.Li.1.fx0 .fxOlr~fxOli)

314. call findfx(Lr~ii,fxoo~fxOOr~fx0Oi)

315 c****

316 c Determine the edge of exit of im(f)=O from current mesh.

317 *dgeitzfxOlifxlli

318 edgeibzfx00I'fxl~i

319 if (edgeit .gt. 0.dO) then

320 c Im(f)=0 goes through the 01 to 10 Line.

321 if (edgeib .gt. 0.dO) then

322 c Im(f)0O goes through the 00 to 01 edge (edge 3).

323 Lout=3

324 else

325 c Im(f)=0 goes through the 00 to 10 edge (edge 4)

326 Lout-4

327 end if

328 else

329 c Im(f)=0 goes through the 01 to 11 edge (edge 2)

330 Loutw2

331 if (edgeib ALt. OAdO) then

332 c Im(f)=0 also runs through 00 to 10 and 00 to 01 edges.

333 c Store crossing location and in/out information.

334 knot12=knot12+1

335 c Locl2r~knot12)Lr

336 c tocl2i(knotl2)=4i

337 end if

338 end if

339 c*****

340 go to 60

341 c***

342 c enter mesh square from top side or exit rectangle at bottom edge.

343 56 LiCi-1

344 if (Hi ge. jbot) go to 57

345 nre2=nre2+1

346 kedge2(nre2)1tr*1

347 go to 10

348 57 fxOlzfxOO

349 fx~lrxfx00r

350 fxOllftfxOOi

351 fxllzfxl0
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352 fxllrxfxlOr

353 fxllizfxlOi

354 58 continue

355 call findfx(ir,LlfxOO,fxOOr,fxOOi)

356 call findfx(trI1,Li,fxlO,fxl0r,fxl0i)

357 c*******
358 c Determine the edge of exit of im(f)=O from current mesh.

359 edgei LfxOOi*fx0l i

360 edgeirufxl0i*fxlli

361 if CedgeI, .gt. O.dO) then

362 c lm(f)=O goes through the 00 to 11 Line.

363 If (edgeir .gt. O.dO) then

364 c l(f)=O goes through the 00 to 10 edge (edge 4)

365 tout-4

366 else

367 c Im(f)=O goes through the 10 to 11 edge (edge 1).

368 tout=l

369 end if

370 else

371 c im(f)=O goes through the 00 to 01 edge (edge 3)

372 lout=3

373 if (edgeir .it. O.dO) then

374 c Im(f)=O also runs through 00 to 10 and 10 to 11 edges.

375 c Store crossing location and in/out information.

376 knot23=knotZ3 l

377 c loc23r(knot23)=tr

378 c toc23i(knot23)=ti

379 end if

380 end if

381 c

382 c****

383 L0 continue

384 nrsqu=nrsqu+l
385 if(nrsqu .gt. maxnsq) go to 95

386 c******

387 c Test for there being at Least one re(f):O Line entering and

388 c Leaving the mesh square.

389 c

390 if ((fxOOr*fxlOr .gt. O.dO) .and. (fx~lr*fxllr .gt. O.dO)

391 + .and. (fxOOr*fxOlr .gt. O.dO)) go to (41,46,51,56) tout

392 c

393 c Computate the values of the modal function at the corners of a

394 c a mesh square to determine its TayLor series to the 3rd order

395 c for estimating its root Locations.

396 c
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397 c f 00-onel

396 f10=cdexp(fxl10fxOO-one
399 f~lxcdexp(fx~l-fxOO)-one

400 fllucdexp(fxll-fxO)-one

401 c

402 c******

403 c write (16,3001) ni,nf,Lr,ll,knotl2,knot23,knot34,knot4I

404 c 3001 formatC/' ni, ni', Ir. 11 and knot12, 23, 34 mid 43 before ROOTS

405 c + ',2i6,2x,2i6,2x,4i6)

406 c

407 c~******* estimate Locations of zeroes by radicals

408 c

409 calL roots~fl0,fOl,fllsoL,nrsoL)

410 c
411 do 63 rwl~nrsoL

412 ureaL a dreal(soL(n))

413 uimag zdimag~soL(n))

414 if WureaL Alt. 0.dO .or. ureat .gt. 1.OdO) go to 63

415 if Cumag ALt. OAdO .or. uimag .gt. 1.OdO) go to 63

416 62 theta(l)=CLr~ureaL)*tmesh
417 theta(2)=(Li~uimag)tmesh

418 nf x nf+1

419 zeros(nf)zdcnmx(thets(l),theta(2))

420 nrzLnrztl1

421 63 continue
422

423 c write (16,3002) ninf,nrsoL

424 c 3002 formnat(/, out of ROOTS at 63, ni, nf and #of roots 1,3j4)

425 c**~ ~
426 c continue following the phase line

427 go to (41,46,51,56) tout

428 C***

429 cc

430 80 cont inue

431 c

432 return

433 c***

434 95 continue

435 write(l6,9500)

436 write0l6,4001)tr,li,ni,nf,tmesh

437 write(* .9500)

438 4001 format('go to 5 from 95 at Ir, li =',i6,',',i6,' ni. nf =,J6,

439 *1,1,i6,1, mesh size z',d14.6)

440 go to 5

441 c*****
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442 97 continue

443 wrlte(16,9700)

444 wrlte16,4002)Lr,li,ni,nftmesh

445 writeC* .9700)

446 4002 format(ogo to 5 from 97 at tr, ti x',16,',',f6,' ni, nf =',i6,

447 +*,l,6,', mesh size =',d14.6,/'zeroes found are kept.$)

448 c nfxnl

449 C

450 return

451 c

452 c**** format statements

453 9500 format(/5x,'too many squares on same phase tine

454 S 'reduce tmesh and start over')

455 9700 format(/5x,0tmesh has been reduced but probtem remain in',

456 S ' executing fzerox')

457 c

458 end
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APPENDIX C: SUBROUTINE ROOTS

This Appendix contains the listing of the subroutine ROOTS. This subroutine

replaces the portion of the subroutine FZEROX where the coefficients of a quadratic

equation are determined, and the subroutine QUAD for locating the zeroes of a

quadratic polynomial. In the revised subroutine FZEROX, the roots of a cubic

polynomial has to be found. This subroutine determines these zeroes by radicals.
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I subroutine roots Cfl~f2,f3,soL~nrsoL)

2

3 c This subroutine finds the roots of a third order potynomiaL by

4 c radicals when the vaLues of this poLynomial at z-0, zal, zzi and

5 c zzl~i are given as f0=1, flefO, f2.fO and f3.fO respectively.

6 c Note that this aLgorithm takes cubic roots of two comptex numb~ers

7 c Chance the rum. 'solution by radicals') and use their linear

8 c combsinations as the roots of a third order polynomial.

9 C******

10 ierpLicit reat*8 (a-h, o-z)

11 coerptex*16 fl,f2,f3.zero,one,ci,ep4eml4,ep23,m23,

12 + fa,fb,fc,fd,fal,fa2,fa3,fals,p,q,deLt~z,zm,u,v,soL

13 parameter (xbi t52=52.dO*0.693i4718055994531d. thrd=1 .dO/3.dO,

14 + bit50=l .dD/33554432.dO/33554432.dO~bit5l=bit5O/2.dO,

15 +bit52=bit5l/2.dO,toL=0.00ldO,

16 + zero=(0.dO,0.dO),one=(1.dO,O.dO),ci=(0.dO,1.dO),

17 + epl4=(0.5d0,0.5d0),ml4=(0.5d0,-0.5dO),
18 + ep23=(-.0.d,0.8660254037843864675d0),
19 + em23=-0.5d0,-0.86602540378443864675d0))
20 dimension sotC'
21 faone
22 fb=-(f2-ci'fl+em14*f3)

23 fcz((ePl4+one)*fl-(eml4+one)*f2+ci'f3)

24 fd=(eml4*Cf2-fl)-epl4*f3)

25 if (cdabs(fb) .Le. WOtW0 fb--zero
26 if (cdabs(fc) .Le. bit5l) fc=zero

27 if (cdabs(fd) .Le. bit52) fd=zero

28 if (fd .ne. zero) then

29 fal=(-thrd)*fc/fd

30 fa2=fb/fd

31 fa3zfa/fd

32 fuls=fal'fal

33 p=thrd'fa2-fals

34 q=0.5d0'(fa3.fal'fa2)-fal'fals

35 if (p .eq. zero) then

36 if (q. eq. zero) then

37 nrsoL=l

38 sol1)Zfal

39 return

40 etse
41 nrsotl3

42 uw((-2.d)q)**thrd
43 sot(l)-u~fal

44 soL(2)=ep23*u+fal

45 sot(3)=em23*uefal

*46 return
47 enid if
48 else
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49 if (q. eq. zero) then

51 soLOl)zfal

52 u-cdsqrtCC-3.dO)*p)

53 soLC2)zful'u

54 sot(3)afal-u

55 return

56 etse

57 v-plq
58 zapv~v

59 abszacdabs(z)
60 if Cabsz ALt. tot) then

61 ZIm-Z

62 fnzdint~l .dO-xbit52/dtog(absz))

63 Lostnxidint(fn)-1

64 dnnufn-0.5d0

65 &dd-fn1I.0d0

66 deLt=ore
67 do 100 ntxl,Lastn

68 dnnd-.d0

69 dnd=dnd-1.d0

70 deitt(dm/dnd)*deLtzm~ore

71 100 continue
72 dett=(0.5d0*deLt/q)**thrd

73 u-pVdeLt

74 v-1.dOldet

75 etse

76 detcdsqrt(onez)-one

77 u(qdeLt)**thrd

78 v=.P/u

79 end if

80 nrsotz3

81 sot(1):u~v+fal

82 soL(2)=ep23*u~em23*v+fal

83 sot (3)zem23*u+ep23*v+fal

84 return

85 end if
86 endif

87 eLse if (fc .ne. zero) then

88 if (fb .eq. zero) then

89 if (fa .eq. zero) then

90 nrsotal

91 soL(1)zzero

92 return

93 etse

94 nrsotz2

95 zxcdsqrtC-fa/fc)

96 soL(1)z
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97 sot C)-z
98 return

99 end if
100 eise
101 fal-0.5dOfb/fc
102 fa2-fa/fc

103 z-fa2/fal/fal
4b104 abazacdobs~z)

10 if Cabsz ALt. tot) then
106 fnwdint(1.d0-xbit52ldtog(absz))
107 Lastn-idint~fn)-l
108 dmufn-0.5d0
109 cfrldfn41.OdO
110 dett=one

ill do 200 nt=1ltastn

112 rw -ld
113 &dddnd-l.d0

114 dett=(dnn/dnd)*dett*z~one

115 200 continue

116 dett=-0.5d0*deLt/fa1

117 nrsot=2

118 sot(1)zfa2*deLt

119 sot(2)zl.dO/det

120 return

121 eLse

122 dettcdsqrt(one-z)

123 nrsot=2

124 sot(1)=-fa1*(one-dett)

125 sot(2)=-fa1*(oneedelt)

126 return

127 end if

128 end if

129 etse if (fb .ne. zero) then

130 nrsoL=1

131 soL(1)=-fa/fb

132 return

133 etse

134 nrsotl1

135 sot(1)=ep14

136 return

137 end if
138 end
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APPENDIX D: SUBROUTINE ABCOEF

This Appendix contains the listing of the subroutine ABCOEF. The consistency

self-checking procedure has been implemented to determine the correct method to

evaluate the Ai and Bi coefficients.
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1 subroutine abcoef(zero,m)

2 c*****

3 c For each mode m, this suboutine calculates A-B coefficients in

4 c all Layers for combining two linearLy independent solutions of

5 c Stokes' equation to form the height gain function:

6 c

7 c height gain=exp(bcoefx(Lm))*(kl*exp(acoefx(tm))+k2)

a c

9 c where k1 and k2 are two independent solutions to Stokes'

10 c equation. In the top layer (i.e. nztayr) the height gain is:

11 c

12 c height gain=exp(bcoefx(t,m))*h2

13

14 c where h2 is a solution to the Stokes' equation associated

15 c with outgoing energy flow. Here ki and k2 are proportional

16 c to the k1 and k2 used by Marcus and the h2 is proportional

17 c to a modified Hankle function of order 1/3.

18

19 c inputs...

20 c zero-an eigenvalue in q1l space

21

22 c outputs...

23 c acoefx-two dimensional array of complex exponents

24 c coefficients used to combine two linearly

25 c independent solutions of stokes' equation

26 c bcoefx-two dimensional array of complex exponents

27 c coefficients used for normalizing the height gains

28

29 c note: acoefx and bcoefx are passed by the

30 c common block /pap2/

31

32 c subroutines called...

33 c xcdai

34 c xcadd

35

36 c common block areas...

37 c com1

38 c com2

39 c pap,

40 c pap2

41 c*****

42

43 implicit reat*8(a-h,o-z)

44 €comptex*16 acoefx,bcoefxcqij,h2xql,dh2xql,h2xq2,dh2xq2,klxql,

45 S dklxql,klxq2,dklxq2,k2xql,dk2xql,k2xq2,dk2xq2,h2dklx,
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,6 $ dh2klx.h2dk2x,dh2k2xnmax,denex.nuwbx,denbx, IntIx, int2x,

47 S hyx,dhyx,kldhyx,dklhyx,dk2hyxk2dhyx,glmdgaiq, i,

48 S koa123, rtsin, zero,ql,€q2,sum,surfnodql j, dql jdz, Sqg,

49 S dnubx,dhuxdhtx,e13xcnegctdqzt,ctdqzm, cigakoawavtthd,

50 * tacoefdacoef

51

52 parmeter(downi-1 .d-3,downr-l .d-3/0.43429d819032518dO,

53 + pi:3.141592653589793238462643d0,

54 + i=(O.OdO,1.OdO),tthdZ(2.dO/3.dO)*i,

55 + cneg:(O.OdO,3.141592653589793238462643d0),e13x-cneg/3.dO)

56 c*****

57 c mxtayr=maximu rmu r of Layers allowed

58 c mxmodewmaxinu number of modes al ttowed

59

60 c

61 c use include file for parameters of

62 c use include file for parameters of

63 c mxtayr max # layers

64 c mxmode max # modes

65 c

66 SincLude: 0mLaparm.inc'

***** Begin Listing of: mlaparm.inc

1 c

2 c include file to define the

3 c maximum 0 of layers (mxiayr)

4 c maximum # of modes (mxmode)

5 c

6 parameter (mxtayr=35

7 parameter (mxmode=127)

***** End listing of: mlaparm.inc

67 c

68c

69 c*****

70 c acoefx-two dimensional complex array used for combining two

71 c independent solutions to stokes' equation

72 c bcoefx-two dimensional complex array used for normalizing height

73 c gain

74 c cqij-two dimensional array containing coefficients for evaluating

75 c qij in terms of qll

76 c dqij-array containing coefficients for evaluating qij in terms of

77 c qll

78 c dqijdz-array containing derivatives of qi(z) in the different

79 c layers

80 c zi-array containing input hesights for the modified refractivity

81
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82 dimension acoefxCmxtayr~mxwxode),
83 S bcoefx~mxayr,wxuode),

84 S dqij~mxLayr),cqij(mxtayr.2).dqijdz~wxlayr),zi(mxtayr.1)

85 c***

86
87 common /comi/freq,waveno~sqng

88 coummon /com2/cqij,dqij,dqijdz,nztayr

89 common /papl/nrmode~koal23.surfno,zi

90 common /pap2/acoefx,bcoefx

91

92 c***

93 c check for single Layer

94 c

95 c set a comptex variable koawav=-i*koa123/Cwaveno*waveno) to

96 c avoid repeating computations

97

98 koawav=-- ikoal3(waveno*waveno)

99
100 if~nztayr .eq. 1)thei

101 ql=cqij(1,1)+zero*dqij(1)

102 catl surf(ql,gan'mdganidq)

103 calL xcdai(-ql~k2xql,dk2xql,klxql,dklxql,h2xqlcti2xql)

104 dh2xqlzd&2xq14el3x

105 intlxmcdLog(koawav*dgamdq-ql/tjqijdz(1 ))*2.OdO*h2xql

106 int2x-2.0d0*dh2xq1-cdtogC-dqi 3dz(1))

107 calL xcadd(sL=u,intlx,int2x)

108 rtsumx=0.5d0*sunx

109 bcoefx(1 ,m)=-rtsumx

110 return

ill end if

112

113 ctdqzL=cdLog(-dqijdz(1))

114

115 c if I equals one then initialize cumulants and caculate a's and

116 c b's in bottom Layer using grounrd boundary conditions.

117

l18 qlzcqij(1,1)+zero*dqij(1)

119 cal xcdaiC-ql,kzxql,dk2xql,klxql,dklxql,h2xql,dh2xql)

120 dk2xqlzdk2xql+cneg

121 dklxq1zdklxq1-el3x

122 cal surf(ql,gamma,dgamdq)

123 cigamaucdtog(i*gamma)

124 call xcadd(numax,ctdqzi-cnegdk2xql,cigaecreg+k2xql)

125 call xcadd(denax,cigam&klxq,ctdqzL+dklzql)

126 acoefx(1 ,m)xnuax-denax
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127 call xcadd~denbx~k2xql,acoefx(l,u).klxql)

128 bcoefx0l,m)--detbx

129

130 c calculate contributions to normalizing integrale.

131

132 cal L xcadd(hyx,k2xql,acoefx(1,m)+klxql)

133 hyxzbcoefx(i1,m)+hyx

134 call xcadd(dhyx,dc2xql~acoefxl ,m)sdklxql)

135 dhyxzbcoefx(1 ,m).dlhx

136 intlx=cdLog(koawavdgaadq-ql/dqiidz(l))2.dO*hyx

137 int2x=2.OdO*dhyx-ctdqzt

138 call xcadd(sLm=,intlx~int2x)

139

140 do 9010 Lx2,nztayr-1

141 1.1=1-1

142 cLdqzt=cdtog(-dqijdz(t))

143 ctdqznwcdLog(dqijdzCtml))

144 ql=cqij(tL)4zero'dqij(t)

145 call xcdai(-ql,k2xql,dk2xql,klxql,dklxql,h2xql,dh2xql)

146 dk2xql=dk2xql+cneg

147 dklxql=dklxqi-el3x

148 q2=cqij(tml,2)+zero~dqij(tml)

149 call xcdai(-q2,k2xq2,dk2xq2,klxq42,dklxq2,h2xq2,dh2xq2)

150 dk2xq2=dk2xq2.cneg

151 dklxq2=dklxq2-el3x

152 call xcadd(hyx,k2xq2,acoefx( Lm1~m)+klxq2)

153 call xcadd(dhyx,dk2xq2,acoefx(lml,m)+dklxq2)

154 kldhyx=klxql+dhyx

155 dklhyx=dklxql~hyx

156 dk2hyx=dk2xql+hyx

157 k2dhyx=k2xql+dhyx

158 call xcadd(denax,cldqzm+kidhyx,cldqzL~dklhyx)

159 call xcadd(numax,cldqzl-cneg+dk2hyx,ctdqzmcneg+k2dhyx)

160 acoefx( L,m)=numax-denax

161 call xcadd(denbx~k2xql ,acoefx(LI m)+klxq1)

162 numbx~bcoefx( Lml ,m)+hyx

163 drnbxt~=bcoef x( tml,m).dhyx

164 bcoefx(i,i)=nmx-denbx

165
166 c calculate contribution to normalizing integrals.

167

168 intlxacdtog(-q1/dqijdz(L)*q2/dqijdz(Lm))2.d'nu*bx

169 call xcadd(sumax,sunx,intlx)

170 caLL xcadd(dhux~dk2xql ,acoefx~t,m).dklxql)

171 diuxbcoefx( l,m)+dhux
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172 intlx=2.Od0*dnumaix-cldqzm

173 int2x=2.OdO*dhux-ctdqzt

174 calL xcadd(sunx,suix,intlx)

175 call xcadd(sunx~sux,int2x)

176 9010 continue

177

178

179 C if t equals nztayer, calculate a's and b's using outgoing

180 C wave in tap layer.

181

182 nzmlznztayr-1

183 qlzcqij(nzLayr,l).zero'dqij(nzlayr)

184 call xcdaic-ql~k~xql,dk2xql,klxql,dklxql,h2xql,dh2xql)

185 dhzxql-dhzxql~el3x

186 q2=cqij(nzml ,2).zero*dqij(nzml)

187 call xcdai(-q2,k2xq2,dk2xq2,klxql2,dklxq2,h2xq2,dh2xq2)

188 dk2xq2-dk2xq2ecneg

189 dklxq2=dklxq2-el3x

190 call xcadd(hyx~k2xq2,acoefx(nzml ,m)+klxq2)

191 numbx=bcoefx(nztayr-1 ,m)+hyx

192 bcoefx~nzLayr,m)=nurbx-h2xql

193

194 c calculate contribution to culuants.

195

196 intlx=cdlog(-qlldqi jdz(nzlayr)+q2/dqijdz(nzml))4

197 S 2.OdO*numix

198 call xcadd(sunx,sunx,intlx)

199 call xcadd(dhyx,dk2xq2,acoefx(nzml ,m)+dklxq2)

200 dnusrbxzbcoefx(nzml ,m)4dhyx

201 intlx=2.dO*dnu1bx-cdlog(dqijdz(nzm1))
202 call xcadd(sux,sumx,intlx)

203 dhuxzbcoefx~nziayr,m)+dh2xql

204 int2x=2.0d0*dhuxcdog(-qijdz(nzlayr))

205 call xcadd(sunx,sumx,int2x)

206

207 c renormalize b's so that height gain integral equals unity.

208

209 rtsunxz.5d0*sunx

210 do 9000 112,nzlayr

211 bcoefx(IlL,m)=bcoefx( II,m)-rtsunx

212 9000 continue

213

214 c****************~******

215
216
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217 tanztayr

218 1.1=1-1

219 ctdqzmacdtog(dqijdz(tm1))

220 ctdqztacdtog(-dqijdzC I))

221

222 c calculate q and associated quantities at bottom of layer 1

223 .

224 qlmcqij(L,1)+zerodqij(L)

225 call xcdaiC-ql,k2xql~dk~xql~klxql.dklxql,h2xql~dhZxql)

226 dh2xql-dh2xql.el3x

227

228 q2=cqij(Lml .2)+zero*dqij iC~)

229 call xcdai(-q2,k2xq2*k2xq2,klxq2.klxq2,h2xq2,dh2xq2)

230 dk2xq2-dk2xq2+cneg

231 dklxq2-dklxq2-e13x

232
233 c*****

234 c Caculate acoefx(Lm1,m),bcoefx~tm1,m)

235 c and culmllants using outgoing wave in nztayr

236 c*****

237 dh2klx=dh2xql~klxq2

238 h2dklxh2xql+dklxq2

239 h2dk2x=h2xql~dk2xq2

240 dh2k2x=dh2xql.k2xq2

241

242 callI xcadd(denax,ctdqzl -cneg+dh2klx,ctdqzm~cnieg+h2dkix)

243 call xcadd~numax,ctdqzmw4h2dk2x,cldqzt~dh2k2x)

244

245 c If in the nztayr-1 layer the magnitudes of A coefficients from

246 c integration up and down differ by less than 0.02 dB and their

247 c phases differ by less than 0.O0lpi, the A and B coefficients

248 c obtained from integration up will be accepted.

249

250 tacoef=nianax-denax

251 dacoef=tacoef-acoefx( 1.1,,)

252 difr-dabs(dreaL(dacoef))

253 if (difr .lt. downr) then

254 difizdimag(dacoef)/pi

255 difl=dabs(difi-dint(difi/2.dO)*2.dO)

256 if (difi .lt. downi) return

257 end if

258

259 acoefx( Lm ,m)ztjzoef

260 call xcadd(denbx,k2xq2,acoefx(Lml,m).klxq2)

261 bcoefx(t1,m)=h2xql -denbx
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262
263 c calculate contributions to cumuLants

264

265 sulx-cdLog(-q1/dqijdz(t)4q2/dqijdz(Lml))*2.Od~h2xql

266 caL L xcadd~dhtx,dk2xq2,acoefx( 1.1 m)+dklxq2)

267 dhtxzbcoefxC 1.1,.)+.dtx

268 intlx=2.DdO*dih2xql-cLdqzL

269 catL xcadd(lntlx,swumxintlx)

270 int2x-2.OdO*dlhLx-cLdqzm

271 calL xcadd(sunx~intlx,int2x)

272

273 do 9030 LznzLayr-1,2,-1

274 Lm1=1-1

275 cldqzLzcdLogC-dqijdz(t))

276 ctdqzmzcdLog(dqijdz(Lml))

277
278 c caLculate q and associated quantities at bottom of LayerL

279
280 ql~cqij(tl)+zero*dqij(L)

281 calL xcdai(-q1,k2xq1,dk2xq1,klxql,dklxql,h2xql,dlhZxq1)

282 dk2xql =dk2xql+cneg

283 dklxql=dklxql-el3x

284

285 q2=cqijCLml .2).zero*dqij(lml)

286 call xcdaiC-q2,k2xq2.dk2xq2,klxq2,dklxq2,h2xq2,dh2xq2)

287 dk2xqzdkzxq2+cneg

288 dklxq2xdklxq2-el3x

289 dh2xq2d2xq2+e13x

290
291 c***

292 c Calculate acoefx(tml,m),bcoefx(Lml,m) and cumulants

293 c using continuity relations in terms of the linearly

294 c independent functions ki and k2

295
296 cal xcadd(hyx,k2xql,acoefxcL,m).klxql)

297 call xcadd(dhyx,dk2xql ,acoefx(LI m)+dklxq1)

298 kldhyxzklxq24dhyx

299 dklhyxzdklxq24hyx

300 dk2hyxzdk2xq2.hyx

301 k2dhyxmk2xq2edhyx

302
303 call xcadd(denax~cLdqzL-cneg+kldhyx,cLdqzmcnegedklhyx)

304 cal xcadd(nwiax,cLdqzm~dk2hyx,cLdqzLek2dhyx)

305 acoefx(Ltl,m)=numax-denax

306 call xcadd(dernbx,k2xq2,acoefx(lml,m)+klxq2)

65



307 numbxubcoefx~t,m).hyx

308 diitxmbcoefxC L,m)+dhyx

309 bcoefxC 1.1 m)znwbx-denbx
310

311 c calculate contributions to cuuants.

312

313 intlxzcdlog(-q1/dqijdz(t)eq2/dqijdzCtml))*2.0d0*numx

314 call xcadd(swxsuw,intlx)

315 callI xcadhdtx~dk2xq2,acoefx(t1.1 m)4dklxql2)

316 dhtxzbcoefx(Lmi~m)+dhLx

31 intlx=2.OdO*dnumbx-ctdqzl

318 int2x=2.0d0*dhLx-ctdqzm

319 call xcadd(suiix,sunx,intlx)

320 call xcadd(sumx~sL=,xint2x)

321

322 9030 continue

323

324 c****

325 c if t equal to one calculate ground

326 c contribution to ciuutants and renormaLize bcoef x's

327

328 1=1

329 q1=cqij(tl1)*zero*dqij(L)

330 call xcdai(-ql,k2xql 1dk2xql,klxql,dklxql,h2xql,dh~xql)

331 dk2xql -dk2xql+cneg

332 dklxql-dklxql-e13x

333

334 cal I xcadd(hyx,k2xql *acoefx( L,m).klxql)

335 cal l xcadd(cliyx,dk2xql ,acoefx( I,m)+dklxql)

336 call surf(ql,ganma,dgaidq)

337 numtbx=bcoefx( L,m)4hyx

338 dumbxbcoefx( i,m).dhyx

339 intlxmcdlog(koawav*dgamdq-q1/dqi jdz( L))+2.0d0*nuibx

340 mnt2x=2.0d0*dnumtbx-cd~og(-dqiidzC1))

341 call xcadd(s'unx,siumx,intlx)

342 call xcadd(suanx~sumx,int2x)

343

344 c renormaLize b's so that height gain integrals equal unity.

345

346 rtsuuxz.5dOsumx

347

348 do 9020 LL=1,nztayr-1

349 bcoefx(tLl,m)=bcoefx(tII,m)-rtswux

350 9020 continue

351
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352 bcoefx~nztayr~m)=-rtsumx

353

354

355 return

356 end
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